Fractions

SC Standard 5-2: The student will demonstrate through the mathematical processes [...] the relationships among whole numbers, fractions, and decimals; and accurate, efficient, and generalizable methods of adding and subtracting fractions

Fractions:

Parts of a Whole

1 ½

 $1^{2}/_{10}$

What is a fraction?

A fraction is a quantity that cannot be represented by a whole number.

Why do we need fractions?

Can you finish the whole cake?

If not, how many cakes did you eat?

If not 0 or 1, then this suggests that we need a new kind of number.

Definitions:

The **denominator** tells us how many congruent pieces the whole is divided into, this number cannot be 0.

The **numerator** tells us how many pieces of the whole are being considered.

Examples:

The blue circle is our whole.

- if we divide the whole into 8 congruent pieces, the denominator would be 8.

We have 7 of these pieces.

The numerator is **7**, and we have 7 of a pizza.

Denominators

If you share a pizza equally among two people, you have 1

If you share equally among three people, you get 1

If you share equally among four people, you will get 1

Denominators

If you share a pizza equally among eight people, you have 1

Conclusion: the slice you get becomes smaller and smaller.

The **larger** the denominator the **smaller** the pieces, the larger the denominator the <u>smaller</u> the fraction, if the numerators are equal.

Equivalent fractions

In the following picture we have $\frac{1}{2}$ of a cake.

If we cut the cake into smaller congruent pieces, we can see that

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6}$$

Or we can cut the original cake into 6 congruent pieces.

Equivalent Fractions

- 5-2.4 Compare whole numbers, decimals, and fractions by using the symbols <, >, and =.
- Do fractions have synonyms or equivalents?
- How can you identify equivalent fractions?

Equivalent fractions

Now we have 3 pieces out of 6 equal pieces, but the total amount we have is still the same.

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6}$$

What might be another equivalent fraction?

Equivalent fractions

Now you try! How many equivalent fractions can you find for ½?

For example:

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8}$$

Comparing Fractions

 How else might you compare two or more fractions?

 Could you use symbols you learned in 4th grade, like < or >?

• For example $\frac{1}{4} < \frac{1}{2}$ or $\frac{6}{8} > \frac{5}{8}$

Comparing Fractions

 Write it out! How many ways can you compare the fractions ½, 1/3, ¾ to each other?

 Please bring your comparisons and equivalent fractions to our next class session.